UV-Curable PFPE-(Meth)acrylates: a new class of UV-Curable Resins
PFPE-(Meth)acrylates - Portfolio

<table>
<thead>
<tr>
<th>Product</th>
<th>Functionality</th>
<th>Fluorine content (% by wt.)</th>
<th>Chemical-physical properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorolink MD700</td>
<td>Bifunctional Urethane Methacrylate</td>
<td>52</td>
<td>Appearance = clear R.I. = 1.342 Viscosity (25°C) = 430 cP</td>
</tr>
<tr>
<td>Fluorolink AD1700</td>
<td>Tetrafunctional Urethane Acrylate</td>
<td>24</td>
<td>70% w/w dry content in Butyl Acetate / Ethyl Acetate [Acrylics] = 2.67 Eq/kg</td>
</tr>
<tr>
<td>Fomblin MD40</td>
<td>Bifunctional Urethane Methacrylate</td>
<td>58</td>
<td>Appearance = clear R.I. = 1.313 Viscosity (25°C) = 695 cP</td>
</tr>
</tbody>
</table>
PFPE-(meth)acrylates: structure – property relationship

- PFPE Molecular Weight:
 - 1000
 - 1500
 - 2000
 - 4000
 - RELEASE
 - SHRINKAGE
 - OPTICAL TRANSPARENCY
 - COMPATIBILITY

- Type of End-group:
 - METHACRYLATE
 - ACRYLATE
 - REACTIVITY
 - RADIANT ENERGY FOR FULL CURE
UV- curable Perfluoropolyethers

Bifunctional

PFPE-urethane (meth)acrylates
Fluorolink MD700: chemical-physical properties

- R.I. (25°C) = 1.342, [F] = 52% (w/w), η (25°C) = 430 cP
- Miscible with conventional acrylic monomers, but only in a well defined window
- Blooms very effectively to the surface of the coating, imparting low surface energy, water/oil repellence, antisticking properties
Fomblin MD40: chemical-physical properties

- R.I. (25°C) = 1.313, [F] = 58% (w/w), η (25°C) = 695 cPoise
- Soluble only in fluorinated solvents (Galden from Solvay Specialty Polymers)
- Compatible with: Darocur 1173 (≤ 1% w/w), Irgacure 184 (≤ 0.5% w/w)
- The homopolymer is an elastomer with outstanding chemical resistance, low surface energy and exceptional antisticking properties, low elastic modulus

![Chemical structure of Fomblin MD40](chart)
UV-curable Perfluoropolyethers

Tetrafunctional

PFPE-urethane (meth)acrylates
Fluorolink AD1700: chemical-physical properties

- Tetrafunctional derivative
- \([F] = 24 \% \text{ (w/w)}\)
- Soluble in AcOEt, MEK, BuOAc
- Good compatibility with commercial UV-curable paints
- Suggested use: low surface energy additive for UV-curable paints, effective in providing easy removal of fingerprints
UV-curing conditions: remarks

• PFPE-(meth)acrylates are strongly affected by oxygen inhibition.

• Curing under nitrogen is recommended for all the formulations with a high PFPE content; PFPE-acrylates (Fluorolink AD1700) can be cured in the air by choosing the proper package of reactive diluents and photoinitiators.

• Standard curing in the air can be applied when using PFPE-(meth)acrylates at additive levels.

• Among the many possible combinations of photoinitiators, Darocur® 1173 (optionally in combination with Irgacure® 127) gives the best performance.
UV- curable Perfluoropolypropylythers

Materials Characterization
Shrinkage upon curing

<table>
<thead>
<tr>
<th>Material</th>
<th>Molecular Weight (AMU)</th>
<th>Shrinkage upon curing</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLK MD700</td>
<td>1800</td>
<td>6.0%</td>
</tr>
<tr>
<td>Fomblin MD40</td>
<td>4000</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

The shrinkage is inversely proportional to the Molecular Weight of the oligomer (distance between two crosslinking sites)
Surface Properties Characterization

<table>
<thead>
<tr>
<th>Cured Material</th>
<th>SYLГARD 184</th>
<th>FLK MD700</th>
<th>Fomblin MD40</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.C.A. vs. H₂O</td>
<td>101°</td>
<td>113° ± 2°</td>
<td>113° ± 2°</td>
</tr>
<tr>
<td>S.C.A. vs. n-C₁₆</td>
<td>___</td>
<td>58° ± 2°</td>
<td>52° ± 2°</td>
</tr>
</tbody>
</table>

- PFPE-based elastomeric materials show an outstanding W/O Repellency.
- Silicones display a higher surface energy than PFPEs and are not oil repellant.
Chemical Resistance (Swelling)

<table>
<thead>
<tr>
<th>Material</th>
<th>Swelling into MIBK (% w/w)</th>
<th>Swelling into CH(_2)Cl(_2) (% w/w)</th>
<th>Swelling into MEK (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYLGARD 184</td>
<td>72</td>
<td>133</td>
<td>57</td>
</tr>
<tr>
<td>FLK MD700</td>
<td>11</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Fomblin MD40</td>
<td>4</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

All the measurements were performed at the equilibrium

- PFPE-based elastomers are not swollen by hydrogenated organic solvents
- Cured Fomblin MD40 shows the best chemical resistance
- Only fluorinated solvents are able to swell the cured PFPE elastomers
UV-curable PFPEs: markets and applications

PFPE-(METH)ACRYLATES

- > 60% (w/w) PFPE content
- < 5.0% (w/w) PFPE content

Optics/Photonics
- Anti Reflective/Antismudge Top Coats
- Polymeric Waveguides, Cladding of Optical Fibers

Additives for UV-curable paints
- Surface energy reduction,
 Water/Oil Repellency, Antigraffiti,
 Easy Removal of Fingerprints
High PFPE content: formulation for aluminum

<table>
<thead>
<tr>
<th>Composition (parts by weight)</th>
<th>Chemical-physical properties</th>
<th>Substrate</th>
<th>Pencil Hardness</th>
<th>MEK d.r.</th>
<th>Cross Cut Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorolink AD1700 50.0</td>
<td>Thickness = 60 μm</td>
<td>Aluminum</td>
<td>H</td>
<td>> 200</td>
<td>100%</td>
</tr>
<tr>
<td>HDDA 15.0</td>
<td>Visc.(25°C) = 65 cP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THFFA 50.0</td>
<td>% PFPE = 13.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darocur 1173 4.0</td>
<td>γc = 19.9 ± 0.2 mN/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sartomer CN386 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzophenone 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Curing conditions (air): 6x10 m/min, H bulb 13 mm, UV power System VPS 1600 (240 W/cm)

- Formulation which combines low surface energy, outstanding chemical resistance and flexibility.

- Self-Healing effect: once the coating is scratched, it flows back into the scratch, returning the surface to its original smooth state (effect of the low T_g of the PFPE chain)
Formulation for aluminum: FLK AD1700 vs. silicone acrylate

<table>
<thead>
<tr>
<th>Composition (parts by weight)</th>
<th>Static Contact Angle vs. H₂O (°)</th>
<th>Static Contact Angle vs. n-hexadecane (°)</th>
<th>Surface Energy (mN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLK AD1700 - HDDA - THFFA 35(dry content):15:50</td>
<td>109 ± 1</td>
<td>63 ± 1</td>
<td>15.0</td>
</tr>
<tr>
<td>Silicone acrylate-HDDA-THFFA 35:15:50</td>
<td>99 ± 3</td>
<td>28 ± 1</td>
<td>25.0</td>
</tr>
</tbody>
</table>

Curing conditions (air): 6x10 m/min, H bulb 13 mm, UV power System VPS 1600 (240 W/cm)

Fluorolink AD1700 outperforms silicone-acrylates in terms of surface energy reduction
Fluorolink AD1700 as a coating surface modifier

Commercial UV-curable formulations loaded with 1%, 2%, and 5% w/w of Fluorolink AD1700 (thickness = 15 μm, Substrate = PMMA):

<table>
<thead>
<tr>
<th>Test</th>
<th>Blank</th>
<th>1% w/w FLK AD1700</th>
<th>2% w/w FLK AD1700</th>
<th>5% w/w FLK AD1700</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Contact Angle vs. H₂O (°)</td>
<td>82 ± 5</td>
<td>103 ± 3</td>
<td>109 ± 3</td>
<td>113 ± 1</td>
</tr>
</tbody>
</table>

- Fluorolink AD1700 improves the water repellency at a low dosage.
- Excellent compatibility with the hydrogenated formulations.
PFPE-(meth)acrylates: conclusions

PFPE-(meth)acrylates are liquid oligomers characterized by unique properties:

- Very low R.I., high thermo-optic coefficient
- Low Surface Energy
- Ability to migrate to the surface of the coating
- Do not contain any PFOS and PFOA

which make them ideal raw materials for manufacturing:

- Coatings having outstanding water/oil repellency, antigraffiti properties, easy cleanability of stains and fingerprints
- Optical coatings for lenses, displays, photonic devices, etc.
Material Safety Data Sheets (MSDS) are available by emailing us or contacting your sales representative. Always consult the appropriate MSDS before using any of our products.

Neither Solvay Specialty Polymers nor any of its affiliates makes any warranty, express or implied, including merchantability or fitness for use, or accepts any liability in connection with this product, related information or its use. Some applications of which Solvay’s products may be proposed to be used are regulated or restricted by applicable laws and regulations or by national or international standards and in some cases by Solvay’s recommendation, including applications of food/feed, water treatment, medical, pharmaceuticals, and personal care. Only products designated as part of the Solviva® family of biomaterials may be considered as candidates for use in implantable medical devices. The user alone must finally determine suitability of any information or products for any contemplated use in compliance with applicable law, the manner of use and whether any patents are infringed. The information and the products are for use by technically skilled persons at their own discretion and risk and does not relate to the use of this product in combination with any other substance or any other process. This is not a license under any patent or other proprietary right.

All trademarks and registered trademarks are property of the companies that comprise the Solvay Group or their respective owners.

© 2013, Solvay Specialty Polymers. All rights reserved.

www.solvay.com